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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:

1. Nodes represent random variables.

2. Edges represent (direct) dependencies.

3. Conditional probability tables (CPTs) describe how each
node depends on its parents.

BN = DAG + CPTs
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Marginal and conditional independence in DAGs

• Missing edges encode assumptions of independence:

P(Xi|X1, . . . , Xi−1) = P(Xi|pa(Xi))
where pa(Xi) ⊆ {X1, . . . , Xi−1} denotes the parents of node Xi.

In words: Each variable is conditionally independent of its
non-descendants given it’s parents.

• Alarm example:

P(E) = P(E|B)
P(J|A) = P(J|A,B, E)
P(M|A) = P(M|A,B, E, J)

These are true no matter
what CPTs are attached
to the nodes in the DAG. 6 / 29



Conditional probability tables



Representing CPTs

Y

X1 Xk-1 XkX2 . . .

• How to represent P(Y|X1, X2, . . . , Xk)?

• Simplest case:

Suppose Xi ∈ {0, 1}, Y ∈ {0, 1} are binary random
variables.

How to represent P(Y=1|X1, X2, . . . , Xk)?
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Types of CPTs

Y

X1 Xk-1 XkX2 . . .

How to represent P(Y=1|X1, X2, . . . , Xk)?

Some possibilities:

1. Tabular

2. Logical / Deterministic

3. Noisy-OR

4. Sigmoid
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1. Tabular CPT

Y

X1 Xk-1 XkX2 . . .

A lookup table can exhaustively enumerate a conditional
probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.

Con A table with 2k rows is too unwieldy for large k.
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2. Logical / Deterministic CPT

Y

X1 Xk-1 XkX2 . . .

CPTs can also mimic the behavior of logical circuits.

AND gate P(Y=1|X1, X2, . . . , Xk) =
k∏
i=1

Xi

OR gate P(Y=0|X1, X2, . . . , Xk) =
k∏
i=1

(1− Xi)

Pro Compact representation for large k.

Con No model of uncertainty.
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3. Noisy-OR CPT

Y

X1 Xk-1 XkX2 . . .

Use k numbers pi ∈ [0, 1] to parameterize all 2k entries in the CPT:

P(Y=0|X1, X2, . . . , Xk) =
k∏
i=1

(1− pi)Xi

P(Y=1|X1, X2, . . . , Xk) = 1−
k∏
i=1

(1− pi)Xi

But why is this called Noisy-OR?
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Noisy-OR CPT (con’t)

Y

X1 Xk-1 XkX2 . . .

p1
p2

pk
pk-1

P(Y=1|X1, X2, . . . , Xk) = 1−
∏k

i=1(1− pi)Xi

• When all parents are equal to zero:
P(Y=1|X1=0, X2=0, . . . , Xk=0) = 1−

k∏
i=1

(1−pi)0 = 1−
k∏
i=1

(1) = 0

• When exactly one parent Xj is equal to one:

P(Y=1|X1=0, . . . , Xj−1=0, Xj=1, Xj+1=0, . . . , Xk=0)

= 1− (1− p1)0 · · · (1− pj−1)0(1− pj)1(1− pj+1)0 · · · (1− pk)0

= 1− (1− pj)
= pj
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Noisy-OR CPT (con’t)

Y

X1 Xk-1 XkX2 . . .

p1
p2

pk
pk-1

P(Y=1|X1, X2, . . . , Xk) = 1−
∏k

i=1(1− pi)Xi

• Modeling uncertainty
Intuitively, pi ∈ [0, 1] is the probability that Xi=1 by itself
triggers Y=1.

• Logical OR as special case
We recover a logical OR gate by taking the limit pi→1 for
all parents i = 1, 2, . . . , k.

• Canonical application
The parents {Xi}ki=1 are diseases, and the child Y is a symptom.
The more diseases, the more likely is the symptom.
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4. Sigmoid CPT

Y

X1 Xk-1 XkX2 . . .

Use k real numbers θi ∈ < to parameterize all 2k entries in the CPT:

P(Y=1|X1, X2, . . . , Xk) = σ

( k∑
i=1

θiXi

)

The function on the right hand side is called the sigmoid function:

σ(z) =
1

1+ e−z

-4 -2 0 2 4
z

0
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0.75

1

(z
)
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4. Sigmoid CPT (con’t)

Y

X1 Xk-1 XkX2 . . .

P(Y=1|X1, X2, . . . , Xk) = σ
(∑k

i=1 θiXi
)

Other uses of sigmoid functions:

• Activation function in neural nets
• Inverse of the link function for logistic regression

Properties:

• If θi > 0, then Xi=1 favors Y=1.
• If θi < 0, then Xi=1 inhibits Y=1.
• These effects can mix in a sigmoid CPT (unlike noisy-OR).
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d-separation and examples



Conditional independence

• What we’ve already seen

A node Xi is conditionally independent of its non-parent
ancestors given its parents:

P(Xi|X1, X2, . . . , Xi−1) = P(Xi|pa(Xi))

• What we can ask more generally

Let X, Y , and E refer to disjoint sets of nodes in a BN.
When is X conditionally independent of Y given E?

When is


P(X|E, Y) = P(X|E)
P(Y|E, X) = P(Y|E)
P(X, Y|E) = P(X|E)P(Y|E)

 ?

• Above is special case

X = {Xi}, E = pa(Xi) Y = {X1, X2, . . . , Xi−1} − pa(Xi)
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Base Cases
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d-separation in DAGs

d-separation = direction-dependent separation

• Motivation

How is conditional independence in a BN encoded by the
structure of its DAG?

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

What counts as a path, and when is it blocked?
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Paths in DAGs

• Definition

A path is any sequence of nodes connected by edges
(regardless of their directionalities); it is also assumed that no
nodes repeat.

• Examples

C

A

E F

B

D

? paths from A to D:
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Blocked paths

• Definition

A path π is blocked by a set of nodes E if there exists a
node Z ∈ π for which one of the three following conditions
hold.

Z     

Z    
edges align

Z  edges diverge

Z   edges converge

(1)

(2)

(3)
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d-separation

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Intuition

Z2

Z1

Z3

X E Y
Z1 ∈ E is an intervening
event in a causal chain

Z2 ∈ E is a common
explanation or cause

Z3 6∈ E,desc(Z3) ∩ E = ∅ is
an unobserved common effect
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d-separation

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Proof (not given)

The proof of the theorem is non-trivial.
You are not responsible for its proof.

• How useful is the theorem? Very!

There are efficient algorithms to test d-separation in large BNs.
You should become skilled at these tests in simple BNs.
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Alarm example

Z     

Z    
edges align

Z  edges diverge

Z   edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

1. P(B|A,M) ?
= P(B|A)

The evidence is {A}.
There is one path B→ A→ M.
Node A satisfies condition (1).
The statement is .

2. P(J,M|A) ?
= P(J|A)P(M|A)

The evidence is {A}.
There is one path J← A→ M.
Node A satisfies condition (2).
The statement is .
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Alarm example (con’t)

Z     

Z    
edges align

Z  edges diverge

Z   edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

3. P(B) ?
= P(B|E)

The evidence is {}.
There is one path B→ A← E.
Node A satisfies condition (3).
The statement is .

4. P(B|M) ?
= P(B|M, E)

The evidence is {M}.
There is one path B→ A← E.
Note that M ∈ desc(A).
The statement is .
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Loopy example

CA

D

E

B

Z     

Z    
edges align

Z  edges diverge

Z   edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B→ D→ E
is blocked by node D,
satisfying condition (1).

Path B→ D← A→ C → E
is not blocked by any node.

The statement is .
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Markov Blanket

A Markov Blanket Bx of node X consists of parents of X,
children of X and ”spouses” (other parents of children of X, but
not X) of X.

P1 P2

X

C1 C2

S2S1

Every variable is conditionally independent of any other
variable given it’s Markov Blanket.

28 / 29



That’s all folks!
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