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Alarm example

P(B=1) = 0.001 P(E=1) = 0.002

~0
-

[ S

A | PU=1A) A | P(M=1]A)
0 0.05 0 0.01
1 0.9 1 0.7
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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:
1. Nodes represent random variables.
2. Edges represent (direct) dependencies.

3. Conditional probability tables (CPTs) describe how each
node depends on its parents.

| BN = DAG + CPTs |
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

P(XGiXa, .., Xizq) = P(Xilpa(X;))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.

- Alarm example:

PUJIA) = P(JIA,B,E)

® o P(M|A) = P(MIA,B,E,))
These are true no matter
(())@ @(()) what CPTs are attached

to the nodes in the DAG.
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Conditional probability tables




Representing CPTs

q )5

- How to represent P(Y|X1, X, ..., Xg)?

- Simplest case:
Suppose X; € {0,1}, Y € {0,1} are binary random
variables.

How to represent P(Y=1[X1,Xa, ..., Xg)?
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How to represent P(Y=1|X1,Xa, ..., Xg)?

Some possibilities:
1. Tabular
2. Logical / Deterministic
3. Noisy-OR

4. Sigmoid
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1. Tabular CPT

X1 | Xz Xi | P(Y=1]X1, %, ., X)
0 0 0 0.1
1 0 0 0.6
0 1 0 0.3
1 1 |- 1 0.2

A lookup table can exhaustively enumerate a conditional
probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.

Con A table with 2% rows is too unwieldy for large k.
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
POY=1X. X, ... %) = []X

=1

kR

P(Y=0[X1, X, ..., X)) = JJ(1-X)

i=1
Pro Compact representation for large k.

Con No model of uncertainty.
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3. Noisy-OR CPT

Use k numbers p; € [0, 1] to parameterize all 2* entries in the CPT:

3

[T =p)"

i=1

P(Y=0[X1,X2,...,Xg)

R

1—TI0—=p)*

=1

P(Y=1[X1, X2, ..., Xk)

’ But why is this called Noisy—OR?‘
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .
P(Y=1X=0,%=0,...,X=0) = 1-]J(1-p)° = 1-]J() = 0

i=1 =1

- When exactly one parent X, is equal to one:

POY=1X=0,... . X_1=0,%~1,X.1=0,...,X,=0)
= 1=(1=p)° - (1=p=)°(1—p)' (V= pjs1)? - (1= pr)°
= 1-0-p)
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Noisy-OR CPT (con’t)

- Modeling uncertainty
Intuitively, p; € [0,1] is the probability that X;=1 by itself
triggers Y=1.

- Logical OR as special case
We recover a logical OR gate by taking the limit p;—1 for
all parents i =1,2,...,k.

- Canonical application
The parents {X,A}f?:1 are diseases, and the child Y is a symptom.

The more diseases, the more likely is the symptom. )2



4, Sigmoid CPT

Use k real numbers 6; € % to parameterize all 2% entries in the CPT:
k
P(Y=1|X1,X2,..., %) = & <Ze,x,->
i=1

The function on the right hand side is called the sigmoid function:
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If 0, > 0, then X;=1 favors Y =1.
- If 6; < 0, then X;=1 inhibits Y=1.
- These effects can mix in a sigmoid CPT (unlike noisy-OR).
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Conditional independence

- What we've already seen

A node X; is conditionally independent of its non-parent
ancestors given its parents:

P(X;‘X],XQ, . ,X,'_1) = P(X,|pa(X,))

- What we can ask more generally

Let X, Y, and £ refer to disjoint sets of nodes in a BN.
When is X conditionally independent of Y given £?

PXIE,Y) = P(XE)
When is P(Y|E,X) P(Y|E) ?
P(X,Y[E) = P(X|E) P(Y]E)

- Above is special case

X=AXi}, E=npalX) Y={X,Xo....X;_1} — pa(X;)
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Base Cases
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d-separation in DAGs

d-separation = direction-dependent separation

- Motivation

How is conditional independence in a BN encoded by the
structure of its DAG?

- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

’ What counts as a path, and when is it blocked?
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Paths in DAGs

- Definition

A path is any sequence of nodes connected by edges
(regardless of their directionalities); it is also assumed that no
nodes repeat.

- Examples

° G ? paths from A to D:
(<]
O O
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Blocked paths

- Definition

A path 7 is blocked by a set of nodes F if there exists a
node Z € & for which one of the three following conditions

hold. O @O
O—@—70

(2) ZeE O~ @ 'O edges diverge
-

3) Z&E O > O edges converge
descendants(Z) N E =0 C{X}
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Intuition

X E Y

O O @ O . Zy € Eis an intervening
event in a causal chain

@ U & U @ 7, crisacommon
explanation or cause

M () ) .
o—oO /\ Oo—=0 Z3 & E,desc(Zz)NE=0is
O O an unobserved common effect

23/29



- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Proof (not given)

The proof of the theorem is non-trivial.
You are not responsible for its proof.

- How useful is the theorem? Very!

There are efficient algorithms to test d-separation in large BNs.
You should become skilled at these tests in simple BNs.
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.

There is one path B — A — M. (()) (())

Node A satisfies condition (1).
The statement is

(1) zeE @—O edges align
Oo—e—o0
2. P(J,MJA) < P(J|A) P(M]|A) @zt O @0 e
. . @ z¢E O—' '—O edges converge
The evidence is {A}. s C{Qo

There is one path J < A — M.
Node A satisfies condition (2).

The statement is
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.

There is one path B — A «+ E. (()) (())

Node A satisfies condition (3).
The statement is

(1) zeE @—O edges align
Oo—e—0
4. P(BIM) £ P(BIM, E) @268 O @O womawee
. . @ z¢E O—' '—O edges converge
The evidence is {M}. s C{Qo

There is one path B — A < E.
Note that M € desc(A).

The statement is
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Loopy example

[ A. TRUE or B. FALSE? ]

5. P(B|D, E) < P(B|D)

The evidence is {D}.
There are two paths from B to E.

PathB — D — E
is blocked by node D,
satisfying condition (1).

PathB—= D+ A—C—E
is not blocked by any node.

The statement is

Oo—@—0
Oo—@—=0

@zce O—@—O

©z¢e O—@—O
descendants(Z) N E =0 O

(1) ZeE

edges align

edges diverge

edges converge
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Markov Blanket

A Markov Blanket By of node X consists of parents of X,
children of X and "spouses” (other parents of children of X, but

not X) of X.
&

ONO

Every variable is conditionally independent of any other
variable given it's Markov Blanket.
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That's all folks!
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