CSE 150A-250A AI: Probabilistic Methods

Lecture 4

Fall 2025

Trevor Bonjour Department of Computer Science and Engineering University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof. Berg-Kirkpatrick)

Agenda

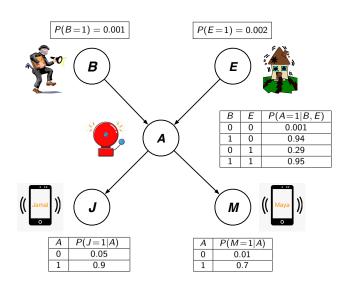
Review

Conditional probability tables

d-separation and examples

Review

Alarm example



Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:

- 1. Nodes represent random variables.
- 2. Edges represent (direct) dependencies.
- 3. Conditional probability tables (CPTs) describe how each node depends on its parents.

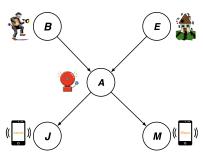
$$BN = DAG + CPTs$$

Marginal and conditional independence in DAGs

· Missing edges encode assumptions of independence:

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Alarm example:



$$P(E) = P(E|B)$$

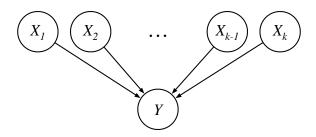
$$P(J|A) = P(J|A, B, E)$$

$$P(M|A) = P(M|A, B, E, J)$$

These are true no matter what CPTs are attached to the nodes in the DAG.

Conditional probability tables

Representing CPTs



- How to represent $P(Y|X_1, X_2, ..., X_k)$?
- · Simplest case:

Suppose $X_i \in \{0,1\}$, $Y \in \{0,1\}$ are binary random variables.

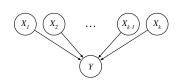
How to represent $P(Y=1|X_1,X_2,...,X_k)$?

Types of CPTs

Some possibilities:

- 1. Tabular
- 2. Logical / Deterministic
- 3. Noisy-OR
- 4. Sigmoid

1. Tabular CPT



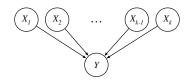
X_1	X_2		X_k	$P(Y=1 X_1,X_2,\ldots,X_k)$
0	0		0	0.1
1	0		0	0.6
0	1		0	0.3
:	:	:	:	:
1	1		1	0.2

A lookup table can exhaustively enumerate a conditional probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.

Con A table with 2^k rows is too unwieldy for large k.

2. Logical / Deterministic CPT



CPTs can also mimic the behavior of logical circuits.

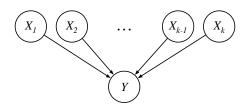
AND gate
$$P(Y=1|X_1,X_2,\ldots,X_k) = \prod_{i=1}^{R} X_i$$

OR gate
$$P(Y = 0 | X_1, X_2, ..., X_k) = \prod_{i=1}^{k} (1 - X_i)$$

Pro Compact representation for large *k*.

Con No model of uncertainty.

3. Noisy-OR CPT



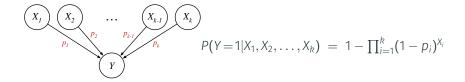
Use k numbers $p_i \in [0,1]$ to parameterize all 2^k entries in the CPT:

$$P(Y=0|X_1,X_2,...,X_k) = \prod_{i=1}^k (1-p_i)^{X_i}$$

$$P(Y=1|X_1,X_2,...,X_k) = 1-\prod_{i=1}^k (1-p_i)^{X_i}$$

But why is this called Noisy-OR?

Noisy-OR CPT (con't)



• When all parents are equal to zero; $P(Y=1|X_1=0,X_2=0,\dots,X_k=0) = 1 - \prod_i (1-p_i)^0 = 1 - \prod_i (1) = 0$

· When exactly one parent X_i is equal to one:

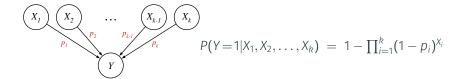
$$P(Y=1|X_1=0,...,X_{j-1}=0,X_j=1,X_{j+1}=0,...,X_k=0)$$

$$= 1 - (1-p_1)^0 \cdots (1-p_{j-1})^0 (1-p_j)^1 (1-p_{j+1})^0 \cdots (1-p_k)^0$$

$$= 1 - (1-p_j)$$

$$= p_j$$

Noisy-OR CPT (con't)



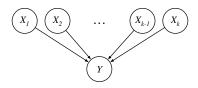
- Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.
- Logical OR as special case

 We recover a logical OR gate by taking the limit $p_i \rightarrow 1$ for all parents i = 1, 2, ..., k.
- Canonical application

 The parents $\{X_i\}_{i=1}^k$ are diseases, and the child Y is a symptom.

 The more diseases, the more likely is the symptom.

4. Sigmoid CPT

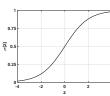


Use k real numbers $\theta_i \in \Re$ to parameterize all 2^k entries in the CPT:

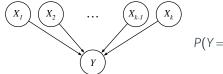
$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

The function on the right hand side is called the **sigmoid** function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



4. Sigmoid CPT (con't)



$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

Other uses of sigmoid functions:

- · Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If $\theta_i > 0$, then $X_i = 1$ favors Y = 1.
- If θ_i < 0, then $X_i = 1$ inhibits Y = 1.
- These effects can mix in a sigmoid CPT (unlike noisy-OR).

d-separation and examples

Conditional independence

· What we've already seen

A node X_i is conditionally independent of its non-parent ancestors given its parents:

$$P(X_i|X_1,X_2,...,X_{i-1}) = P(X_i|pa(X_i))$$

· What we can ask more generally

Let X, Y, and E refer to disjoint sets of nodes in a BN. When is X conditionally independent of Y given E?

When is
$$\left\{ \begin{array}{ll} P(X|E,Y) &=& P(X|E) \\ P(Y|E,X) &=& P(Y|E) \\ P(X,Y|E) &=& P(X|E) P(Y|E) \end{array} \right\} ?$$

Above is special case

$$X = \{X_i\}, \quad E = pa(X_i) \quad Y = \{X_1, X_2, \dots, X_{i-1}\} - pa(X_i)$$

Base Cases

d-separation in DAGs

d-separation = direction-dependent separation

· Motivation

How is conditional independence in a BN encoded by the structure of its DAG?

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

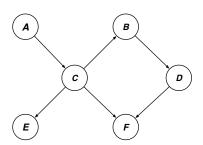
What counts as a path, and when is it blocked?

Paths in DAGs

· Definition

A path is any sequence of nodes connected by edges (regardless of their directionalities); it is also assumed that no nodes repeat.

· Examples



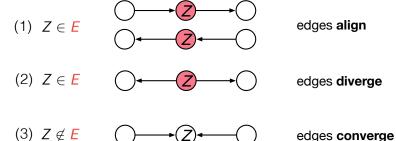
? paths from A to D:

Blocked paths

Definition

A path π is **blocked** by a set of nodes E if there exists a node $Z \in \pi$ for which one of the three following conditions hold.

 $\mathsf{descendants}(\mathit{Z}) \cap \mathit{E} = \emptyset$

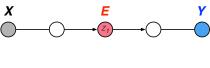


d-separation

Theorem

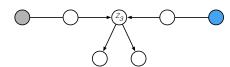
P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Intuition



 $Z_1 \in E$ is an intervening event in a causal chain

 $Z_2 \in E$ is a common explanation or cause



 $Z_3 \notin E$, $\operatorname{desc}(Z_3) \cap E = \emptyset$ is an unobserved common effect

d-separation

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Proof (not given)

The proof of the theorem is non-trivial. You are **not** responsible for its proof.

· How useful is the theorem? Very!

There are efficient algorithms to test d-separation in large BNs. You should become skilled at these tests in simple BNs.

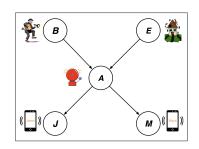
Alarm example

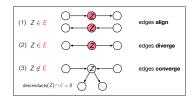
A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$

The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1). The statement is

2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$ The evidence is $\{A\}$. There is one path $J \leftarrow A \rightarrow M$. Node A satisfies condition (2). The statement is





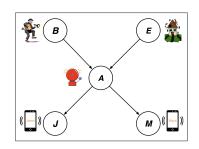
Alarm example (con't)

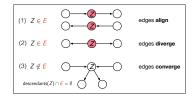
A. TRUE or B. FALSE?

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is

4. $P(B|M) \stackrel{?}{=} P(B|M, E)$ The evidence is $\{M\}$. There is one path $B \to A \leftarrow E$. Note that $M \in \operatorname{desc}(A)$. The statement is





Loopy example

A. TRUE or B. FALSE?

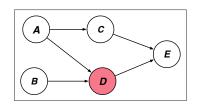
5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

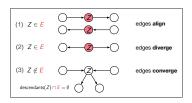
The evidence is $\{D\}$. There are two paths from B to E.

Path $B \rightarrow D \rightarrow E$ is blocked by node D, satisfying condition (1).

Path $B \to D \leftarrow A \to C \to E$ is not blocked by any node.

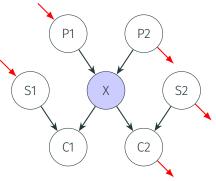
The statement is





Markov Blanket

A Markov Blanket B_X of node X consists of parents of X, children of X and "spouses" (other parents of children of X, but not X) of X.



Every variable is conditionally independent of any other variable given it's Markov Blanket.

That's all folks!